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The tetracyclic ketal 24, a suitable intermediate for the synthesis of antitumor pentacyclic quassinoids, has been efficiently prepared from
communic acids (5a—c), via methyl ketone 9. The synthetic sequence from 9 to 24 consists of 15 steps in 12% overall yield.

Quassinoids are terpenoids, mainly found in Simaroubaceadikalactone D (2), an antimalarial compound 50 times more

species, which exhibit a wide range of potent biological

potent than quininé,which shows potent in vivo activity

activities? Among quassinoids, pentacyclic derivatives hav- against lymphocytic leukemia P-388 in mitand cedrono-
ing picrasane skeleton are the most relevant because of theitactone (3), which has a significant in vitro cytotoxicity
antitumor activity. Representative quassinoids of this type against P-388 celsDespite the large number of studies on

include bruceantinelj, a potent antileukemic agehgima-
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the synthesis of this class of compounds, only a few complete
syntheses, involving low-yield, long sequences, have been
reported.

In continuation of our research into the synthesis of natural
bioactive compounds based on enantiopure synthons obtained
from natural source®we are developing a route to this type
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of quassinoid starting from communic aciés{-c), the main

diterpene constituents from Cupresaceae species, such as

Juniperus communts.

Acids 5a—c contain thetrans-decalin moiety that char-
acterizes the A/B ring system of quassinoids, featuring both
the absolute and the relative stereochemistry of carbons C-8
C-9, and C-10. Moreover, the carboxylic group on C-5
should allow the functionalization of the A ring, via
degradation to the corresponding olefin, and the-C&2
double bond would allow the oxygenated function to be
introduced on C-7. The labdane side chain could be
transformed into the C ring and enable thactone ring to
be elaborated.

The retrosynthetic scheme (Scheme 1) involves three key
intermediates4, 16, and9. Compound} has an acetal group
that could be converted into thé-lactone D-ring. The
diosphenol or 1-hydroxy-3-en-2-one groups in the A ring of
guassinoids could be obtained from the hydroxymethyl group
on the C-4 in the intermediatg via thermal rearrangement
of the ozonide derived from the related alderyae through

the Baeyet-Villiger oxidation of this aldehydé! Moreover,
functionalization in the C-ring could easily be achieved by
means of the C13—C14 double bond. The hydroxymethyl
group in C-8 should enable the E bridged ether ring to be
elaborated. Acetadl could be prepared by stereoselective
hydrocyanation of the enone obtained after aldol condensa-
tion of 16. The last compound could result from side chain
lengthening by conventional methods and allylic oxidation
on C-7 in9.

In this sequence the ready availability of large amounts
of methyl ketone9™ becomes very important The obtention
of this compound fronduniperus communibkerry extracts
has recently been considerably improved (Scheme 2). Es-
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a. CHoNy, Et,0 0°C; b. Na, t-BuOH, 60°C, 18h (85%); ¢. OsOy4 0.2%,
NalOy, t-BuOH-H >0, rt, 5 day; Jones, acetone, rt; Et, O/ ac.

Na,CO;5; d. SeO,, EtOH,60°C, 12h (66%); e. TBSCI, imidazole,
DMF, 1t, 14h (94%); f. LDA, -78°C, glyoxaldimethylacetal, THF,

30 min (95%); g. MsCl, Py, rt, 2.5h (94%); h. DBU, benzene, 1t,

3h (92%); i. Raney Ni, THF, rt, 30 min (94%)
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a. O3 CH,Cl,, -78°C, 15 min; Ph 3P, rt, 4h (91%);
b. MeONa/MeOH, reflux, 11h (91%); e. KCN,
Et,AICN, 18-crown-6 ether, toluene, 0°C--rt, 20h (87%) €

this mixture was heated at 6C with sodium intert-butanol,
crude product consisted mainly of compouridand8 (ratio

2:8), resulting from 1,2- and 1,4-reduction, respectively. By
oxidation of the reduction mixture with osmium tetroxide
and sodium metaperiodate and then with Jones’ reagent, a
crude product with @H NMR spectrum that revealed the
presence of more than 95% of_me_thyl ket@was obtained a. DIBAL, THF, rt, 3.5h; b. NaBH,, EtOH, rt, 45 min (93%);
after neutral—acid phase fractioning. In this way, 42 @of ¢ AgO, Py, 1t, 4h (95%); d. PhSH, BF;.E,0, CH,Cl, rt, 5h
was obtained in a suitable purity for further reactions from (85%); e. HgCl,, HgO, CHsCN-MeOH, 1t, 14h (82%);

2.2 kg of dry plant, without chromatographic purification. I N2BHa» NiCl, THF, reflux, 12h (63%)

Oxidation of 9 with selenium dioxide resulted in high
stereoselectivity alcohol0 (66% yield). The'H NMR
spectrum of10 showed that the proton H-ppeared ab Ozonolysis of the exocyclic double bond gave diketone
4.39 ppm as a triplet)(= 3.0 Hz). The multiplicity and the 16, which underwent intramolecular aldol condensation to
coupling constant were consistent with Higeing in the ~ give the tricyclic enonel? (Scheme 3). TheH NMR
equatorial positionf face), which supported our assignment Spectrum ofl7 showed that the acetal proton (H-2ppeared

of the stereochemistry of the C48ydroxy group inl0. After ato 4.23 ppm as a double doublet< 5.1, 3.0 Hz), because
protecting the hydroxyl group in the form of tert- of the shielding effect of the ketone carbonyl group.
butyldimethylsilyl ether, the side chain lengthening idf Hydrocyanation ofl7 with potassium cyanide, diethylalu-
was performed. All attempts at alkylation with different alkyl minum cyanide, and 18-crown-6 etfeafforded, in high
halides were unsuccessful; nevertheless, the condensation oftereoselectivity, nitrild8a,bas an epimer mixturel8a (8
kinetic enolate from11 with glyoxal dimethylacetal was epimer) andL8b (o epimer) were obtained in 75% and 12%
achieved, giving hydroxy ketond2 in 95% vyield, the yield, respectively, after column chromatography. The con-
mesylate of which underwent elimination with DBU to give ~figuration of carbon C-16 was assigned on the basis of NOE
the a’ﬁ_unsaturated keton®4. TheE Configuration of the difference experiments. Irradiation on the C-16 methoxy
C(2)—C(3) double bond was established on the basis of thegroup of 18a produced a significant enhancement of the
H NMR spectrum analysis, which showed two double Signals corresponding to the proton H-124.

doublets av) 6.31 ppm § = 16.1, 1.3 Hz) and 6.54 ppnd ( Acetal isomerl8a was used to complete the synthetic
= 16.1, 4.1 Hz), due to the olefinic protons. Chemoselective sequence to facilitate spectroscopic analysis. In this com-
reduction of the conjugated double bond was accomplishedpound, the ketone group is masked as enol ether, which
by following a new methodology described by the present allows the nitrile to be transformed into a hydroxymethyl
authorst* Reduction ofL4 with Raney nickel gav&5in 94% group by reduction. Subsequent reduction X8a with
yield.

OMe
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DIBAL and ammonium chloride allowed the simultaneous was obtained as an epimer mixture after reductive desulfu-
reduction of the nitrile and ester groups, affording hydroxy- rization of 23 with nickel boride.

aldehydel9 in 93% vyield (Scheme 4). Diaceta®l was The synthetic sequence froBa—c to 24 constitutes an
obtained after treatment with sodium borohydride and AB—ABC—ABCD approach to the enantiospecific synthesis
acetylation. Finally, the furan ring opening was accom- of pentacyclic antitumor quassinoids, which could be com-
plished. Exposure a21 to thiophenol and boron trifluoride  petitive with those previously reported.

etherate in methylene chloride at room temperature for 5 h

allowed, for the simultaneous deprotection of the silyl ether ~Acknowledgment. The authors thank the DGICYT
group, the opening of the dihydrofuran ring and the (Project PB-98 1365) for financial support.

subsequent cyclization to the thioacetal deriva??e This
compound was obtained as an epimer mixture, in 85% yield,
the thioether groups of which were sequentially removed.
Acetal epimers23 resulted when22 was stirred with
mercury(ll) chloride and mercury oxide in acetonitrile/
methanol (1:1) at room temperature for 14 h. Finaiy, OL0065322

Supporting Information Available: Experimental pro-
cedures and IR, HRMS, aritl and*3C NMR spectra of all
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650 Org. Lett., Vol. 3, No. 5, 2001



